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Si. Introduction. Individual and collective preferences are often

modelled using binary relations. Weak orders turn out to be especi A lv

useful for this purpose A survey of this general area is provided

by [31. The references ([21, [91, [10], [121 and [13]) also are of

interest. The idea iS to let X denote ai Set ol alternatives and

then rank X by p rl-C, rtIe. TIItS xl'' man011s v is pr!efferable to x.
9

The resulting hinary relation P is often a weak rdler on X, i n

that P is

(1) reflexive (xPx for all x t X)

(2) transitive (xPy and yPz > xPz)

(3) total (for x,y c X, xPv or yPx).

- Such relations also arise naturally in digital image processing.

Tn its most general form, a (monochromatic) digital picture is simply

a rectangular array of numbers that have spatial as well as numerical

significance. Multilevel threshholding of a picture involves choosing

'i1mhc1 I , . 1. k with h , hk :11d 1.bell ing- sites

wit ] 1 i! thli ir valle doe s Hot exceed hi 2 if th'ir va l ie exceeds

h1  but not h 2 . etc. This process simply constructs a weak order

on Lhe picture.

Finallv, weak orders arise in connection with the reconstruct ion

of evolutionary trees. The underlying set here is a set of "evolutionary

units , and if the goal is to construct a binary tree on X that in

Sollr, sense estimatos t he 1 1-1e evoluti o1v hi strv of the currentlv

e'xisting members of X, then tine can view Lhi s as construIctinug a

-



nested sequence of weak orders on these members. For more det;iis, the reader

is referred to [51, [61, 171, [81 and [111.

Using the above examples I-or motivation, we now embark on a di -

cuss ion of the order theoretic properti es Of the partial.v orde red

set of weak orders on a set. In §3, this work will be related to

oarl ier work in plre I1 t ice theory, and in '4 the' w ,ek Or-w ol .o

I iite, set wi II be char-cterized in an order theoretic anid comitia-

torial setting.

52. Weak Orders. Let X be a noneripty set, and W(X) the set of

weak orders on X , with W(X) partially ordered bv implicition. Thns

' . in W(X) if

xPv implies xQy

for all x,y X. The atoms of W(X) are then the linear orders of

X, the largest element of W(X) is the relation X N X, and the

(oatoms arc the wtak orders that partition X into two classes. Fo r

I ai proper subsct of X, it will he convenient to let c(,I) hec

th, coatom defined bv (xy) C(I) if I . , v XI, or -

x X ,I with v , I.

A weak order P on may lso he thought of as an ordered rI r-

t it ion of X. This is a pair (P,<) wil, v, P is a partition of X,

nJ '" a line;r ordering of the cl,±s,. -,f P. When P has only

.1 finite lumber of ldistinlct classes, it wv '' ,Itten he convenient to
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specify their ordering by simply listing them in ascending order. For

example, one could write

There is yet a third way of viewing weak orders. If A, P ! -'(X)

with A an atom under P, then 11 mav be viewed a a cogrtLn C (c

relation on the chain (X,A). The principal filter in W(X) generated

by A is then isomorphic to the lattice of congruence relations on

(X,A).

We turn now to some elementary order theoretic properties of W(X).

We begin with the assumption that X is infinite and will later see

what else can be said in the finite case. Accordingly, until further

notice, it will be assumed that X denotes some fixed infinite set.

Rather than stating the results formally as theorems, they will inst ,d

be listed as properties of W(X).

(P) E_v._ery prinCip_al tilter of W(X) is ,i comjete, comactlv

,gnerated dis-tributive lMat t ice.

Proof: This follows from the fact that if A is an atom of W(X)

then the 1)rinc ipal filter generated bv A in W(X) is isomorphic to

the lattice of congruence relit ions of the chain (X,A).

(P2) W(X) is a join semi)latt ice.

Proof: This follows trivially from (PI).



(1'3) WXM I s ;ILi s i tC nld dua IMIIV I t 1111is t ic

)roof : ULet P) in ii TherO must th011 L'Xi ;t L' I011tmt x*

stich that XOY but not XPy. Ihf [11c a m.1pp jg Xbv Icl t ill",

()= y , n (v) = x andi1 n(Z) =z for z I x,v. If A is miv atom

under P, we take A to he the atom specified by sA It if - (s).,'--t)

Then A Q but A IP and this shows W(X) to he atomistic.

D~ual atomic ity fo 1 lows from the fact that the 1 a t i, t of con ,ruecnce

relat ions Of a chain is dually atomist [c..

(P4) Let J, K be- proper -subsets of X. C(J) AC(K) exists -in

w~) if and oniv if J1 K or K ,J.

Proof: If J cK, it is easy to show that

C(J)A CK) =(X\K)(KJ)(]).Ac cersion For

c(J A (K)- (\K)(K\) ().NTIS GRA&I

If J, K are not comparable, one can choose x J\K and v V.I. Unannounced

I f A were an atomn Linde r both C (J) and C (K) , thiis wooldc fo(rce Jsiini'_

B y ..........
butDi stribution/

xAv and yAx, JAvaii and/or
Dist Special

a contradiction.

(P5) Le t (C. be a fanLi v of contoils of W(X M if C

f ai- Is t-o ex ist , th-en there exist indices, i j J -such that C *\C

f ail s to- exist'.



Proof.: We shiall estab 1 ishI tlie 'ont raposi t i ye of (1P5) Suppose t hat

C. A C. exists for all indices i,j. Let P C '.C. where denotes

set intersection. Then P is a reflexive transitive relation on N

We would be done if we could show P to be total. Tf xl'v fails,

then xC.v must fail for some i ,J , so yC. x. Consider anv other

Ck(k J) . TIf C C CGI and Ck = C (J k) we kniow that .1

i re compa ra b IL. Now (x,v) C C. f orces v y W with 11 X It

.1k then x , 1k forces Y C kX. I I .I1 1 ) thn V N Ik

aga in to rces yk X . Consequtent IV, *V'x.

The above result should he compared with 171, Theorem 2. 1)* . 146i.

It might also be mentioned that (P5) applies to arbitrary Carilies of

weak orders not just to coatoms. This is an immediate consequence of

W (X) b ein g dIuialI I y ait om i s t i c . Before proceeding we shall need ,ome*.

nota t ion. As we have been1 doi ii se t un i 'n aind intersect ion will 1be

denoted by 1,and fl, With V,A reserved for the Join and meet

operations in WMX). Following the terminology introdluced b%, Mon-

jardet ([I13], p. 54) we agree for a binary rel at ion iion X to let

deultt' t the rophiotOf Q, * i

0( = (x,v):(v,x) /t

he duial of Q. Not ice that when 0; is a z'k ordeLr, d is the.

strong, prefterence relation associ ated wi tl Q in that

d
(x~v) Q (x~) n ,rl~l (V, X) e



(P6) For P,Q in W(X) there is a smal lest weak order R ovt, r

P such that R A 0 exists. This weak order R will b e d'noted

1, = P f Q.

Proof: Our go;oal will b . to prove that R is the tr:insit'ivc closure

of P u (P C Qd) The key t act here is the observat ion that

(1) PAQ exists in W(X) if and onlif P .)

____ P Q and Q(_P

Proo-f of (1): If A is a lower bound for P,Q in W(X) , then

(,V) PI implies (vx) P(', so (y,x) A It follows that

(x,v) A, whence (x,y) 0. By symmetry, Qd p. Suppose con-

d d
verselv that pd Q and Q P. Let R = P cr 0. We need only show

that R - W(X) , and to do this, we need only argue that it ic total.

If (xv) R", then (yx) Bd = () n od d , P . 0 = R,

as desired. To establish the theorem we note first that IL,'essar i v,

(2) qd 1 (, (* i i )

Proof of (2): This follows trivially from the fact that

d (I~ dQ ( p) : (0 n P").

'tur k'tXt that

('3) [P J(p' , ) (c) d Q.

d

... ,, ( J: t', io t I .,t thit ([ l , p. I/ t " R 4:,.,m in-

ui on on tie lattie of I c in.irv reiatioa o X, this fo 1 '.

trii al Iv from

-1
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[PU(p d d (I (d dd

[P ~ ~ uc (P do 1"t

- (Id n P d) (p , )

- ,, I ( ) o ) 0.

It can now he shown that

(4) For R > P, R A . exists in 14(X) i F and on lv if R contains

the transitive closure of P u (pC n Qd),

c d dProof of (4): If R contains P o (P n ) then by (2), o R.

Also, if (x,y) , R then (y,x) R N, so (y,x) P (P" )

and by (3) (x,y) , Q. Thus Rd  Q and (1) may not be applied to

sec that R A ( exists.

Siupp e ,'onVerselv that R A , ,xists. By (1), W R, whence

P (p , Qd) R.

lie assertion of (P6) now follows from the fact that R contains

o (pC o Q d) if and only if it contains its transitive closure, anld

the transitive closure of P u (IPc I 0d ) is a weak order o X.

Remark: If ' 0 are voting preferences then one can think of P 0

is bein Litt, prltrcie obtained hv 0 casting doubt on P i . .,

whenever t here is a confi I ct between I' and 0, the issue is settled

by leaving that part icular preference unresolved. The preference

(p1 t0) A . may be thought of as tile modi Iicat ion of Q by means of

' wherever possbic, and IS ilrig thie pre j.,,nc, of wherever there

is a conflict. Similar interpretations occui when dealing with digital

pictures or eyvlt[ ionary trees.
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(P7) If the partition associated with P has oil V finitely :nany

distinct classes CIC ...... Ck, then the interval under P in W(X) is

isomorphic to W(C) x W(C2) ... X W(C() .

Proof of 7: 1'hc desired isomorphism is easilyv shown to be

l 'Qp2' . k)

where Qi = the restriction of Q to C.1 1

At this point we impose the restriction that X be finite, and with

no loss in generality, take X = {l,2,...,nl, where n > I is a positive

integer. In view of this, we shall write W(n) in place of W(X). We

then have:

(Fl) The interval above any atom of W(n) is isomorphic to the

lattice of all subsets of an n - 1 element set.

Proolfol (1"). Th is Iol lows f rom tli prool of (i'I

(F2) Say that a coatom is of type i if its largest class has i

members. This produces n - I distinct types of coatoms having the

following properties:

(a) A coatom C is of type i iff C AB exists for exac tlyi

trvi 1 coatoms B.

(1) Iv ry .I I ol is t m i. lI o I' xac I n I 1.1 c . -1 (c 01 I Cli'

t__L
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Proof of 0?2). These assertions follow from (1'4).

(U3) There are coatoms of type i and each such coatomn dominates

exactly i!(n - i)! atoms. In fact, the pi incipal ideal generated by a

_type i coatom is order isomorphic to W(i) x W(n - i).

Proof of Q'3). See property (P7).

(V4) For n 3, the group o_ order automo ph isins of V (n ) is

isomorphic to 2 x S , where 2 is a group of order 2, and S is- n ---- n - ---

the group of permutations of {1,2 . n}.

l'roof of(F4). For each 71 S n , the correspondence C(J) -- C((J)n

clearly extends to an order automorphism of W(n), and these order auto-

morphisms are distinct. The correspondence (B, ) (, ) is an order

iitLoiorplh isll Of order 2 that commutMLes with the order ;ltiomorlphisms in-

duced by the elements of S . The subgroup of the group C of all ordern

automorplhiisms of W(n) generated by these mappings is thus clearl\

isomorphic to 2 x S • We would be done if we could just show that G
' - n

ha; order 2 x n!. By F3, an order automorphism of W(n) must map

a type I coatom into either a type 1 or a type n - I coatom. Suppose

that C(i) igets nm;pped to a type n - 1 coatom by the order auoomorphism

'. Choose j,k # i, anl note that none of fC(i) A fC(j), IC( i) A, IC(k),

or f(C(j) A fC(k) can exist. Since fC(i) is type n- 1, it follows

that at least one of fC(j) or fC(k) must also be type 1 - 1. It
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then fol lows that the remaining one must be type n - 1. liere we lwave

used the I.Ict that a type 11 - I coatJoLf has I Ieet with exNIct I I I'c I

coatom. Thus if f sends one type I coatom to type n - I c:i tom,

then it must send all type I coatoms to type n - I coatoms. By P3,

an order automorphism is completely determined by its effect on the coatoms

of W(n). There are only 2 x n! ways that the type I coatoms can be

mapped onto either themselves or the type n - I coatoms, and we are

done. it should be noted that the result does indeed fail for OP(2);

for o)P(2) is a 3 element semilattice with 2 itois and a unit element

so its group of automorphisms is simply 2.

3. Relation to Residuated 'Mappings. Before doing anything along these

lines, some background material is needed. A mapping from a partially

ordered set P to a partially ordered set Q is said to be residuated

in case the preimage of a principal ideal of Q is necessarily a principal

ideal of P; dually, is said to be residual if the preimage of a

principal f iI Ler of Q is a principal filter of P. An alternate but il-

luminating definition for residuated mappings would state that ':I K)

is residuated if

(1) is isotone in that a . b in P implies ;.(a) - :(b) in 0,

+
and there is an isotone mapping 1, :Q P such that

(2) p .+ + (p) and q + (q) for all p , ej * Q.

+
The mapping + is then residual and is completely determined by . To

say that 41' is rane _-re si duated will be tO say that the prcin. re o



every principalI ideal of Q is eitiher emptv or a princ ipal idealI of

1). Thi.s is ev iden t Iv equivalent to the asrionl t ha t .~is rt's i liat tJ

i t it is c'ons i dered( to he( ai mai p I , om 1) ill to( t I Ic o rdelr f i It 0v 1 l

0~ generated hv its image. To sayi that (':P () is ranc11e- cI use'd i s

to say that its imagoe is c-on-vex in that V() (I *(h) imp I it's t lit,

eXistenLc' Of- an element p of P' such thai~t (I () A residuatca

mapping P 1 -~ ) is said to be dual I v rainge-cl u-sed if the iMage(L in P

oif its assoiciated residual mapping is convex. Final I'., we acree to

Call I t multjplicative in case? the existence of al A b in P ininl ies

th,-]t (aA 11) is the in! munkm in U of GO (a i (h) in t Ihier wjord s

al mu ItL i 1) 1 i ca t i ye mi )in g p)reser'TveCS fii 1te C CXi StLing P i 11f ma .l~ For an

in!tiuLct ion to the thliory of resi iliited ijpitlss, tilie readeILr mi git

consul 1t 14] It Wil b e conven i~ot to let M (I1) denoCMte the Semlig roulp

of ti aI range- res i dna ted mu 1t ip i ati ye mai~ppings onl thu part iall v

ordered Set 11, and caljl P all N-semi l at tice in case for each p ,P

there, correspond i dempot en ts J , , inl M (P) Such that

p 1

(2) $'is dunal ]v range-closed wit h the iaeot the Pr-ill ipl1

i ii ter generated I1w 1 p.

011 r goal wilIl he t o characte r ize M-sem i l at t ices. It will t in out

r -w conven ient t o f irs t i nvest iit e the i;i row" ope rat ion on a oein

se. I t t i ce.
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Theorem 1. Lect P be a join semi lat iCe wi th ne" stia ll_.st elyemlent.

Sps_ that every filter of P is a distributive lattice, ad _that

for every a,b in 1', a f b is the smallest element above, a that

has a meet with h. Then:

) a < a ' b.

(2) a = a t b iff a A b exists.

(3) a < b inTlies a t c < 1) c.

(4) b c i mpJi es a t b a f c.

(5) Tf a A h ex i sts, t he n (a A b) t (a ') A (1 ,).

(() (a v b) C = (;I t c) v (1) t )

(7) (a I b) c (a t b) v (a e)

(8) If b A c exists, then a t (b A C) (a b h) v (a c).

Proof: The first 4 items are trivial.

(5) If x > a A b and x A c exists, then x V a > a c and

x v ) ' t c. Sice't x = (x v aj) A (X V 1) thi; shows that

' (a t e) A (b h). In par ic l.ir, this is; ti ,' 1,.i X ) ,

'I he rc-vi rst i nequa I i ty oIllows Iroi (3)

(6) Is clear.

(7) It x > (a 1 )) t c, then x -' a b and x A exists,

so t rom x a, we have also that x - a c. Hence x (a b) (a c

0 (a h) v (a ) 'I , then x a ' and x A c eXists, S

-(a h ) c ,.

(0) It x a and x A 1) A c exi t. then x A b a1i! x , c most

exist, so x > (a t b) v (a t c). If x > (a h) v (a ), then x" a

anod >: A , x A c exist . Sill'' AIso h A c 'xists, we hav th1tt

1) A, Ac exists and x a t ( A').
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We turn now to the characterizat; i of M-semi lattict-s.

Theorem 2. Necess;trv and sufiien't cond(Iitioen., 1-r i pairt iilv

ordered set P to h e anl f-Semil1at t ice 11re'

(i) Everv pricia filter of P) be 'm inp cat i ve lat t ice,

(ii) P be a pion serilatt lee.

(iii) Given a,b P, there is anl element, a 1)h su-ch tha-t

a <a t~ b and X A b exists for x a iff x >a b .

P'roof: Necess i L V. Iv identl Iy P mu11st halvo a 1,11-i',st. hlem-1 1 ,

[41, Theorem 13.1, p. 119, 1P i s a join semi latt ice. Now let a,p) P

with ( E M1(P) a range-closed idempotont whose image is (p], the princi-

pal ideal generated by p). If a,p) have a lower bound x, then x = '(x),

and by [41 Theorem 13.1, p.11 9 , a)Ap exists and equals ':+(a) . In fact4

(G) (a) - (a) A () (a A p) a ; A p).

4-,,. e ho n ,Wi part i e Iir, S ;ii.c (a) a1nd( 1 have (o) Is al Iowcvhun

hiave

(2) () a) Ap.

Now if x a and X A p) exists, then bv (1) ,

=t X xA 1 >

Hencei

(3) x 7- (a) v a.
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if, on the contrary, (3) holds, then clearly x A p exists. Th,,s

we may take

(4) . t p 1(') v a

The fact that every principal filter of 1) is an implicative lattice

now follows from the observaLionl that il a, p have a 1owor bound in

P then (a) = a A p. Thus a " a A, p is residuated in nv pr incipl 1

filter F of P, and this is preciselY the assertion that F he

an implicative lattice.

For the converse assume (i), ( i ) ad ( i I). Lct p - P. The mapping

(x) = x V p wi I I serve as a dual ly range-cJosed idempOt, nt memb,,r
++

of M(P) with . :[p,l] P given by ,i +(y) = y for v > p. The

mapping 1, is multiplicative because every principal filter of P

is a distributive lattice. To define the desired range-closed idem-

potent in M(P), take

(5) (a) = (a t p) A 1.

V'o r 1 ) ', if the preimage of (h I under , is not m111p V. then

'(x) " b,p implies the existence of b A p. Working in the implica-

tive lattice lb A p,1], let b * be defined by the rule t A p b h

iff t c h . Then for a , 1', L(a) = (a p)^p b implies

(a 'p) v 1) ) A < b, so a < (a t p) v b < . If converselv a b

then a v (b A p) hb shows [tI V (b A p) p 1 . Since a p

a v (b A p) _ b it follows that (a) (a t p) A p b" b .

Thus the preimage of (hi , hndr ., is (b']. lhis show to li,



range-residuated. Clearly (p is idempotent and its image is (p].

To see that is multiplicaitive we app lv Theoirem 1 (5) to see thait

if a A b exists in P, then

( A ) [(a A 1)) p] A 1) (Ap '( t p) A 1

and this shows that (a A b) A (b)) A

The point to All this is contained in

CoROLLARY 3. W(X) is an. M-semilattice.

§4. A Characterization of W(n) . For a partially ordered set P, let

us agree to call. a,b P related in case they have a commo)n lower

bound , and call them unrelat-ed- othierwi se. We then have

Tiweorem 6. Let L be a- poset having a largest element 1 * but

no. smallest el-ement. SIT PpCse (11 sat-isfies- the olwigconditions:

1) 1. is atomic.

(2) For every atom p of L, [p,11 is isomorphic to the lattice

o-f allI subsets of an ni - 1 element set.

(3) Amng~ the coatoms Of L there is a. family S nf n c o-atoms

t-hat is maximal with respect to be-ingL p~i-ise- unrelat-ed. Call thIie sec

coatomIS -!LecJial1, and supklos e the are such that:

(3a) Corresponding to each1 1r) e snv-et .1 o f 'S t here is a

u~p:ituccotom c 0J that is re I :ILed to a I s J and in rela-ted t e

pery s V .1. Every coarom is of this form.



(3b) c J eit f h aiv J. are paitm~ise comparable

aI tets

Thien 1, i-s i-somorphic to (n)

Proof There t ii sloe iii colitomls , S;o t hev ~~ he ItliL lit

-0), c(2),. c(n). DCet itie ":I. ' W(n) by CA.!'()) C(J), 'i t I

(1) the hUh 1it VIllct. 01 -4(11) . Vot AilV other- C1lelknt o f

by (2) , X has al un1ique representat ion as X A.(,(,. ) where there

are at most 1n - I Coatonis i(J). By (3b) t the J 's are pal rwise

comparable , so hv property (M), A * c (J.)exist s in 1h'(n) . De fine

x) C (J . ). B t hc uniqueness of t he rcp rcesen tat iou of x a,, thle

mecet of a f.imi lv ol coatoms, i ; Well de't iced'(. TO S(C thalt it is

onto, note that if 1) = A~ (,IJ ) xiStS inl W(uj) the arlgumenlt wc

just made can he reversed to cone 1nui. that Acit (.1) kcxri-t ; ill I

Bv construction, (A .(J .)) A.( .c ) The proof is cottpletei h)V

ob~servinog that x -,vil1 is equivalent to the aisscrt ion tha~t

the set oif coat oms above x be cont ained in the set aibove y , aind

this is cleaIrly equivalent to t ) u(v)

Though the aibove chairact er i z at ion is ea;sy to 0s (';11 I i sh , i t i S

in many wayvs tin sat i stact orv. For- one thtinge olidiioltis (3ai) an1d

3b) are- extreme lv Powerful, tor anot her, they' are, et~minitoria I as

wellI as being order theoretic. It wouild be interest inc to weCaen

theseC condhit ions, thouigh as we shllI soon see, they cannot he cuit irely

eliminated. It WOUld also be Of interesL to hive a chiaracter i:;t ion

tha; t is more order theoret ic. Ill that W 0(n) 15 s 1 semli Boo I ln. I Iebra-:

. hiir~itcr L.it ion Aony' tielii' ol (ITheorm 1.17, p.

won i l .01so he aipprorui at c.
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Before closing, it is il II luminat ing to cOisidtr soni, e . imp I k,.

Each example is of a poset with height 3. n lv the coatoms will

be shown; a connection between a pair of coatoms will indi cate that

there is an atom beneath them. In that each atom will he inder

exactlV two coatoms, this completely spec if ics the poset . Each

example will have a set of 3 special coatoms. These will be indicated

h v open cirles, with the ren;iain i ,iig coat (lnls dttnotcd bv cl(sed circrl s,

Fig. I is the diagram for OP(3). Referring to the condition of

Theorem 6, the example in Fig. 2 satisfies (1), (2), (3), (3a), but

not (3b); the example in Fig. 3 satisfies all conditions except (3a).

F ig:. 1 01'(3) Fig, ' 277
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